10 research outputs found

    Collective decision making under qualitative possibilistic uncertainty: principles and characterization

    Get PDF
    Cette Thèse pose la question de la décision collective sous incertitude possibiliste. On propose différents règles de décision collective qualitative et on montre que dans un contexte possibiliste, l'utilisation d'une fonction d'agrégation collective pessimiste égalitariste ne souffre pas du problème du Timing Effect. On étend ensuite les travaux de Dubois et Prade (1995, 1998) relatifs à l'axiomatisation des règles de décision qualitatives (l'utilité pessimiste) au cadre de décision collective et montre que si la décision collective comme les décisions individuelles satisfont les axiomes de Dubois et Prade ainsi que certains axiomes relatifs à la décision collective, particulièrement l'axiome de Pareto unanimité, alors l'agrégation collective égalitariste s'impose. Le tableau est ensuite complété par une axiomatisation d'un pendant optimiste de cette règle de décision collective. Le système axiomatique que nous avons développé peut être vu comme un pendant ordinal du théorème de Harsanyi (1955). Ce résultat á été démontré selon un formalisme qui et basé sur le modèle de de Von NeuMann and Morgenstern (1948) et permet de comparer des loteries possibilistes. Par ailleurs, on propose une première tentative pour la caractérisation des règles de décision collectives qualitatives selon le formalisme de Savage (1972) qui offre une représentation des décisions par des actes au lieu des loteries. De point de vue algorithmique, on considère l'optimisation des stratégies dans les arbres de décision possibilistes en utilisant les critères de décision caractérisés dans la première partie de ce travail. On offre une adaptation de l'algorithme de Programmation Dynamique pour les critères monotones et on propose un algorithme de Programmation Multi-dynamique et un algorithme de Branch and Bound pour les critères qui ne satisfont pas la monotonie. Finalement, on établit une comparaison empirique des différents algorithmes proposés. On mesure les CPU temps d'exécution qui augmentent linéairement en fonction de la taille de l'arbre mais restent abordable même pour des grands arbres. Ensuite, nous étudions le pourcentage d'exactitude de l'approximation des algorithmes exacts par Programmation Dynamique: Il apparaît que pour le critère U-max ante l'approximation de l'algorithme de Programmation Multi-dynamique n'est pas bonne. Mais, ceci n'est pas si dramatique puisque cet algorithme est polynomial (et efficace dans la pratique). Cependant, pour la règle U+min ante l'approximation par Programmation Dynamique est bonne et on peut dire qu'il devrait être possible d'éviter une énumération complète par Branch and Bound pour obtenir les stratégies optimales.This Thesis raises the question of collective decision making under possibilistic uncertainty. We propose several collective qualitative decision rules and show that in the context of a possibilistic representation of uncertainty, the use of an egalitarian pessimistic collective utility function allows us to get rid of the Timing Effect. Making a step further, we prove that if both the agents' preferences and the collective ranking of the decisions satisfy Dubois and Prade's axioms (1995, 1998) and some additional axioms relative to collective choice, in particular Pareto unanimity, then the egalitarian collective aggregation is compulsory. The picture is then completed by the proposition and the characterization of an optimistic counterpart of this pessimistic decision rule. Our axiomatic system can be seen as an ordinal counterpart of Harsanyi's theorem (1955). We prove this result in a formalism that is based on Von NeuMann and Morgenstern framework (1948) and compares possibilisitc lotteries. Besides, we propose a first attempt to provide a characterization of collective qualitative decision rules in Savage's formalism; where decisions are represented by acts rather than by lotteries. From an algorithmic standpoint, we consider strategy optimization in possibilistic decision trees using the decision rules characterized in the first part of this work. So, we provide an adaptation of the Dynamic Programming algorithm for criteria that satisfy the property of monotonicity and propose a Multi-Dynamic programming and a Branch and Bound algorithm for those that are not monotonic. Finally, we provide an empirical comparison of the different algorithms proposed. We measure the execution CPU times that increases linearly according to the size of the tree and it remains affordable in average even for big trees. Then, we study the accuracy percentage of the approximation of the pertinent exact algorithms by Dynamic Programming: It appears that for U-max ante criterion the approximation of Multi-dynamic programming is not so good. Yet, this is not so dramatic since this algorithm is polynomial (and efficient in practice). However, for U+min ante decision rule the approximation by Dynamic Programming is good and we can say that it should be possible to avoid a full Branch and Bound enumeration to find optimal strategies

    Egalitarian Collective Decision Making under Qualitative Possibilistic Uncertainty: Principles and Characterization

    Get PDF
    International audienceThis paper raises the question of collective decision making under possibilistic uncertainty; We study four egalitarian decision rules and show that in the context of a possibilistic representation of uncertainty, the use of an egalitarian collective utility function allows to get rid of the Timing Effect. Making a step further, we prove that if both the agents’ preferences and the collective ranking of the decisions satisfy Dubois and Prade’s axioms (1995), and particularly risk aversion, and Pareto Unanimity, then the egalitarian collective aggregation is compulsory. This result can be seen as an ordinal counterpart of Harsanyi’s theorem (1955)

    Décision collective sous incertitude qualitative possibiliste : principes et caractérisation

    Get PDF
    This Thesis raises the question of collective decision making under possibilistic uncertainty. We propose several collective qualitative decision rules and show that in the context of a possibilistic representation of uncertainty, the use of an egalitarian pessimistic collective utility function allows us to get rid of the Timing Effect. Making a step further, we prove that if both the agents' preferences and the collective ranking of the decisions satisfy Dubois and Prade's axioms (1995, 1998) and some additional axioms relative to collective choice, in particular Pareto unanimity, then the egalitarian collective aggregation is compulsory. The picture is then completed by the proposition and the characterization of an optimistic counterpart of this pessimistic decision rule. Our axiomatic system can be seen as an ordinal counterpart of Harsanyi's theorem (1955). We prove this result in a formalism that is based on Von NeuMann and Morgenstern framework (1948) and compares possibilisitc lotteries. Besides, we propose a first attempt to provide a characterization of collective qualitative decision rules in Savage's formalism; where decisions are represented by acts rather than by lotteries. From an algorithmic standpoint, we consider strategy optimization in possibilistic decision trees using the decision rules characterized in the first part of this work. So, we provide an adaptation of the Dynamic Programming algorithm for criteria that satisfy the property of monotonicity and propose a Multi-Dynamic programming and a Branch and Bound algorithm for those that are not monotonic. Finally, we provide an empirical comparison of the different algorithms proposed. We measure the execution CPU times that increases linearly according to the size of the tree and it remains affordable in average even for big trees. Then, we study the accuracy percentage of the approximation of the pertinent exact algorithms by Dynamic Programming: It appears that for U-max ante criterion the approximation of Multi-dynamic programming is not so good. Yet, this is not so dramatic since this algorithm is polynomial (and efficient in practice). However, for U+min ante decision rule the approximation by Dynamic Programming is good and we can say that it should be possible to avoid a full Branch and Bound enumeration to find optimal strategies.Cette Thèse pose la question de la décision collective sous incertitude possibiliste. On propose différents règles de décision collective qualitative et on montre que dans un contexte possibiliste, l'utilisation d'une fonction d'agrégation collective pessimiste égalitariste ne souffre pas du problème du Timing Effect. On étend ensuite les travaux de Dubois et Prade (1995, 1998) relatifs à l'axiomatisation des règles de décision qualitatives (l'utilité pessimiste) au cadre de décision collective et montre que si la décision collective comme les décisions individuelles satisfont les axiomes de Dubois et Prade ainsi que certains axiomes relatifs à la décision collective, particulièrement l'axiome de Pareto unanimité, alors l'agrégation collective égalitariste s'impose. Le tableau est ensuite complété par une axiomatisation d'un pendant optimiste de cette règle de décision collective. Le système axiomatique que nous avons développé peut être vu comme un pendant ordinal du théorème de Harsanyi (1955). Ce résultat á été démontré selon un formalisme qui et basé sur le modèle de de Von NeuMann and Morgenstern (1948) et permet de comparer des loteries possibilistes. Par ailleurs, on propose une première tentative pour la caractérisation des règles de décision collectives qualitatives selon le formalisme de Savage (1972) qui offre une représentation des décisions par des actes au lieu des loteries. De point de vue algorithmique, on considère l'optimisation des stratégies dans les arbres de décision possibilistes en utilisant les critères de décision caractérisés dans la première partie de ce travail. On offre une adaptation de l'algorithme de Programmation Dynamique pour les critères monotones et on propose un algorithme de Programmation Multi-dynamique et un algorithme de Branch and Bound pour les critères qui ne satisfont pas la monotonie. Finalement, on établit une comparaison empirique des différents algorithmes proposés. On mesure les CPU temps d'exécution qui augmentent linéairement en fonction de la taille de l'arbre mais restent abordable même pour des grands arbres. Ensuite, nous étudions le pourcentage d'exactitude de l'approximation des algorithmes exacts par Programmation Dynamique: Il apparaît que pour le critère U-max ante l'approximation de l'algorithme de Programmation Multi-dynamique n'est pas bonne. Mais, ceci n'est pas si dramatique puisque cet algorithme est polynomial (et efficace dans la pratique). Cependant, pour la règle U+min ante l'approximation par Programmation Dynamique est bonne et on peut dire qu'il devrait être possible d'éviter une énumération complète par Branch and Bound pour obtenir les stratégies optimales

    Truck to door assignment in a shared cross-dock under uncertainty

    No full text
    International audienceThis paper addresses the optimization of the truck to door assignment problem in cross-docks. It defines a new form of horizontal collaboration between suppliers by sharing the platform’s resources to enhance service level and reduce economical costs. Moreover, this study proposes to solve the problem by considering an uncertain transfer time, that is frequently observed in real-world cross-docks. Due to imprecise arrival time of trucks, equipment breakdown, or workload variation, etc, the actual transfer time tends to be shorter or longer than the prefixed one. This uncertainty is modeled as a triangular fuzzy number then a Fuzzy Chance Programming model has been proposed to solve the problem using possibilistic measures. The efficiency and robustness of both (deterministic and fuzzy) proposed models are tested empirically and obtained results confirm the positive effect of collaboration and uncertainty handling

    Algorithms for Multi-criteria optimization in Possibilistic Decision Trees

    Get PDF
    International audienceThis paper raises the question of solving multi-criteria sequential decision problems under uncertainty. It proposes to extend to possibilistic decision trees the decision rules presented in [1] for non sequential problems. It present a series of algorithms for this new framework: Dynamic Programming can be used and provide an optimal strategy for rules that satisfy the property of monotonicity. There is no guarantee of optimality for those that do not - hence the definition of dedicated algorithms. This paper concludes by an empirical comparison of the algorithms

    Solving sequential collective decision problems under qualitative uncertainty

    Get PDF
    International audienceThis paper addresses the question of sequential collective decision making under qualitative uncertainty. It resumes the criteria introduced in previous works [4], [5], [6] by Ben Amor et al. and extends them to a more general context where every decision maker is free to have an optimistic or a pessimistic attitude w.r.t. uncertainty. These criteria are then considered for the optimization of possibilistic decision trees and an algorithmic study is performed for each of them. When the global utility does satisfy the monotonicity property, a classical possibilistic Dynamic Programming can be applied. Otherwise, two cases are possible: either the criterion is max oriented (the more is the satisfaction of any agent, the greater is the global satisfaction), and a dedicated algorithm can be proposed, that relies on as many calls to Dynamic Programming as the number of decision makers; or the criterion is min oriented (all the agents must like the common decision) and the optimal strategy can be provided by a Branch and Bound Algorithm. The paper concludes by an experimental study that shows the feasibility of the approaches, and details to what extent simple Dynamic programming algorithms can be used as approximation procedures for the non monotonic criteria

    Collective decision making under possibilistic uncertainty. Principles and characterization

    Get PDF
    International audienceThis paper raises the question of collective decision making under possibilistic uncertainty. We study several egalitarian decision rules and show that in the context of a possibilistic representation of uncertainty, the use of an egalitarian collective utility function allows us to get rid of the Timing Effect. Making a step further, we prove that if both the agents’ preferences and the collective ranking of the decisions satisfy Dubois and Prade’s axioms (Dubois, Prade, 1995), and particularly risk aversion, and Pareto unanimity, then the egalitarian collective aggregation is compulsory. This result can be seen as an ordinal counterpart of Harsanyi’s theorem (Harsanyi, 1955). The picture is then completed by the proposition and the characterization of an optimistic counterpart of this pessimistic decision rule

    Multi-objective Cross-Docking in Physical Internet Hubs Under Arrival Time Uncertainty

    No full text
    International audienc

    Fuzzy multi-objective truck scheduling in multi-modal rail–road Physical Internet hubs

    No full text
    International audienceThe Physical Internet (PI) is an innovative concept that has the potential to significantly improve the efficiency, cost-effectiveness, and sustainability of the global supply chain industry, particularly in cross-docking operations. This paper addresses the truck-scheduling problem in rail–road PI-Hubs, taking into account simultaneously both uncertainty and multi-objective decision-making, which has not been fully explored in the literature, particularly for PI-structures. Our proposed approach defines a Multi-Objective Mixed-Integer Programming model (FMO-MIP) that incorporates fuzzy chance-constrained programming and -constraint to minimize both the total delay and the sum of PI-containers traveled distances, while considering the uncertainty on truck arrival times. This work takes into account the particularities of the Physical Internet and presents a novel decision-making solution to generate a robust Pareto front that aligns with decision-makers’ attitudes towards risk (optimistic/pessimistic) while balancing trade-offs between conflicting objectives
    corecore